Singapore’s dreams of becoming a solar-powered nation is near

Tan Congyi

SINGAPORE (CNA) – Could sunlight offer the key to unlocking Singapore’s sustainable future?

Advancements in solar energy technologies and declining prices promise to unleash the power of the sun for a country with growing energy needs.

Many countries, including Singapore, have risen to the existential challenge of climate change and have committed to stabilise, or even reduce their carbon emissions.

By 2050, this small country aspires to halve emissions from its peak, with a longer-term view to achieve net-zero emissions as soon as viable in the second half of the century.

Tapping on clean energy can help to move the needle, especially since electric power generation accounts for 39 per cent of Singapore’s emissions.

Last year, an ambitious goal was unveiled for Singapore to install at least two gigawatt-peak (GWp) of solar photovoltaic (PV) power by 2030 – more than six times the currently installed capacity.

In an accelerated deployment scenario, the Solar Energy Research Institute of Singapore (SERIS) expects solar power to contribute 28 per cent of Singapore’s peak power demand during mid-day by 2030, and 43 per cent by 2050.

This raises an interesting question: What might an increasingly solar-powered Singapore look like?

Today, most of the solar PV panels in Singapore are on rooftops and are largely out-of-sight. That could change going forward as scientists and engineers explore more innovative deployment options to make the best use of Singapore’s limited space.


In the future, we can expect solar power to become more visible in the public eye.
For one, harnessing vertical spaces for solar PV installations will become increasingly important as buildings stretch ever skywards in Singapore.

Engineers have found a way to supplement conventional façades with ones that can generate electricity. In the future, we can also expect individual solar PV panels to better mimic the appearance of conventional building materials like glass, brick, or concrete, and generate power at the same time.

This will allow architects to better incorporate solar PV into a building’s design, and will serve as an important enabler of zero-energy buildings, super-low-energy buildings and positive-energy buildings.

To overcome space constraints, developers in Singapore are deploying solar PV panels over water bodies. Over the next few months, avid joggers will see floating PV systems progressively being rolled out at Bedok and Lower Seletar Reservoirs.

Next year, a large 60 megawatt-peak (MWp) floating solar PV system will also be completed at Tengeh Reservoir. This vast system is 40 times bigger than those deployed at Bedok and Lower Seletar Reservoirs.

Motorists driving into Singapore from Malaysia across the Second Link Bridge might be able to catch a glimpse of it as they exit the Tuas Checkpoint.

Future floating solar PV power plants will generate clean electricity and could also be combined with other industrial uses such as fish farming, desalination or “green” hydrogen generation.

Solar PV technologies are incredibly versatile and can be integrated in many ways into the urban environment. Lightweight solar PV panels can be readily installed on pedestrian linkways and bus shelters to generate electricity from otherwise passive surfaces.

Solar PV panels can also be configured as noise barriers that help alleviate noise pollution emanating from motorways and MRT traffic, while generating clean electricity. These solar noise barriers have proven to be useful in many places and are currently being tested in Singapore. If successful, commuters could soon see them on their way to work.

Movable solar PV systems can be deployed in pockets of temporarily vacant spaces to better their use. Indeed, there are projects that aim to do just that.

Under a JTC programme, a semi-mobile PV system has been deployed on Jurong Island, and another will soon be constructed at Changi Business Park. These generate clean solar electricity, which is then made available to consumers.

When the land is needed by the authorities for development, the solar PV panels and supporting equipment can be quickly packed up and relocated.


As the cost of solar electricity continues its downward trend, solar PV has become an increasingly attractive form of energy generation technology.

For systems built on larger buildings in Singapore with flat and unobstructed roofs, the so-called “levelised cost of electricity” (LCOE) for solar electricity is now less than eight cents per kilowatt-hour. This compares well to the wholesale electricity price, which also hovers around eight cents per kilowatt-hour (prior to the slowdown of economic activities in Q2 2020).

However, solar PV alone cannot power Singapore. Solar PV panels cannot generate electricity at night, and the availability of sunlight during the day also fluctuates due to frequent changes in cloud cover.

For Singapore to accommodate a large share of solar power in the coming decades, its variability will be one key challenge to overcome.

When solar generation dips, other parts of the power grid must compensate to ensure that the supply of electricity remains stable.

A resilient electricity grid, in which solar power plays a greater role, will require providers to build new capabilities to ensure a stable supply of energy, including solar power forecasting, and energy storage systems.

Ultimately, sustainability is the key consideration that guides Singapore’s drive towards greater adoption of solar energy. Hence, the deployment of solar power will not happen at the expense of greenery, green spaces and Singapore’s biodiversity. Where possible, future solar PV installations will be co-located with greenery to the benefit of both.